Multi-clustered solutions for a singularly perturbed forced pendulum equation
Keywords: forced pendulum equation, unbounded solutions
Abstract
In this paper, we are concerned with unbounded solutions of the singularly perturbed forced pendulum equation in the presence of friction, namely e(2)u(x)" e + sinue = e2a( t)ue + e2 beta(t)u e in (- L, L). Using a limiting energy function, we describe the behaviour of the solutions as the parameter e approaches zero. We also prove the existence of a family of solutions having a prescribed asymptotic profile and exhibiting a highly rotatory behaviour alternated with a highly oscillatory behaviour in some open subsets of the domain. The proof relies on a combination of the Nehari finite dimensional reduction with the topological degree theory.
Más información
Título según WOS: | Multi-clustered solutions for a singularly perturbed forced pendulum equation |
Título de la Revista: | PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS |
Volumen: | 150 |
Número: | 1 |
Editorial: | CAMBRIDGE UNIV PRESS |
Fecha de publicación: | 2020 |
Página de inicio: | 387 |
Página final: | 417 |
Idioma: | English |
DOI: |
10.1017/prm.2018.62 |
Notas: | ISI |