Multi-clustered solutions for a singularly perturbed forced pendulum equation

Martinez, S; Salazar, D

Keywords: forced pendulum equation, unbounded solutions

Abstract

In this paper, we are concerned with unbounded solutions of the singularly perturbed forced pendulum equation in the presence of friction, namely e(2)u(x)" e + sinue = e2a( t)ue + e2 beta(t)u e in (- L, L). Using a limiting energy function, we describe the behaviour of the solutions as the parameter e approaches zero. We also prove the existence of a family of solutions having a prescribed asymptotic profile and exhibiting a highly rotatory behaviour alternated with a highly oscillatory behaviour in some open subsets of the domain. The proof relies on a combination of the Nehari finite dimensional reduction with the topological degree theory.

Más información

Título según WOS: Multi-clustered solutions for a singularly perturbed forced pendulum equation
Título de la Revista: PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS
Volumen: 150
Número: 1
Editorial: CAMBRIDGE UNIV PRESS
Fecha de publicación: 2020
Página de inicio: 387
Página final: 417
Idioma: English
DOI:

10.1017/prm.2018.62

Notas: ISI