CONVERGENCE TO THE MEAN FIELD GAME LIMIT: A CASE STUDY

Nutz, M; San Martin, J; Tan, XW

Keywords: equilibrium, Mean field game, n-player game, optimal stopping

Abstract

We study the convergence of Nash equilibria in a game of optimal stopping. If the associated mean field game has a unique equilibrium, any sequence of n-player equilibria converges to it as n -> infinity. However, both the finite and infinite player versions of the game often admit multiple equilibria. We show that mean field equilibria satisfying a transversality condition are limit points of n-player equilibria, but we also exhibit a remarkable class of mean field equilibria that are not limits, thus questioning their interpretation as "large n" equilibria.

Más información

Título según WOS: CONVERGENCE TO THE MEAN FIELD GAME LIMIT: A CASE STUDY
Título de la Revista: ANNALS OF APPLIED PROBABILITY
Volumen: 30
Número: 1
Editorial: INST MATHEMATICAL STATISTICS
Fecha de publicación: 2020
Página de inicio: 259
Página final: 286
Idioma: English
DOI:

10.1214/19-AAP1501

Notas: ISI