Approximation of the vibration modes of a plate coupled with a fluid by low-order isoparametric finite elements
Abstract
We analyze an isoparametric finite element method to compute the vibration modes of a plate, modeled by Reissner-Mindlin equations, in contact with a compressible fluid, described in terms of displacement variables. To avoid locking in the plate, we consider a low-order method of the so called MITC (Mixed Interpolation of Tensorial Component) family on quadrilateral meshes. To avoid spurious modes in the fluid, we use a low-order hexahedral Raviart-Thomas elements and a non conforming coupling is used on the fluid-structure interface. Applying a general approximation theory for spectral problems, under mild assumptions, we obtain optimal order error estimates for the computed eigenfunctions, as well as a double order for the eigenvalues. These estimates are valid with constants independent of the plate thickness. Finally, we report several numerical experiments showing the behavior of the methods.
Más información
| Título según WOS: | Approximation of the vibration modes of a plate coupled with a fluid by low-order isoparametric finite elements |
| Título según SCOPUS: | Approximation of the vibration modes of a plate coupled with a fluid by low-order isoparametric finite elements |
| Título de la Revista: | ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE |
| Volumen: | 38 |
| Número: | 6 |
| Editorial: | EDP SCIENCES S A |
| Fecha de publicación: | 2004 |
| Página de inicio: | 1055 |
| Página final: | 1070 |
| Idioma: | English |
| URL: | http://www.esaim-m2an.org/10.1051/m2an:2004050 |
| DOI: |
10.1051/m2an:2004050 |
| Notas: | ISI, SCOPUS |