Uniqueness results for the one-dimensional m-Laplacian considering superlinear nonlinearities
Abstract
We study existence and uniqueness of positive solutions of the boundary value problem (P)lambda {- (\u'\(m-2)u')' = lambdaf(u) in (0, 1), u(0) = u(1) = 0, where lambda is a positive parameter, m > 1, and f : [0, + infinity) --> R is a continuous function which vanishes at most once in (0, + infinity). Assuming that f is superlinear at + infinity, we study its behavior near zero to obtain uniqueness results, which are proved using the shooting method. (C) 2003 Elsevier Science Ltd. All rights reserved.
Más información
Título según WOS: | Uniqueness results for the one-dimensional m-Laplacian considering superlinear nonlinearities |
Título de la Revista: | NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS |
Volumen: | 54 |
Número: | 5 |
Editorial: | PERGAMON-ELSEVIER SCIENCE LTD |
Fecha de publicación: | 2003 |
Página de inicio: | 927 |
Página final: | 938 |
DOI: |
10.1016/S0362-546X(03)00118-4 |
Notas: | ISI |