On Variational Formulations in Nonlinear Magnetoelastostatics
Abstract
Two new variational principles for nonlinear magnetoelastostatics are derived. Each is based on use of two independent variables: the deformation function and, in one case the scalar magnetostatic potential, in the other the magnetostatic vector potential. The derivations are facilitated by use of Lagrangian magnetic field variables and constitutive laws expressed in terms of these variables. In each case all the relevant governing equations, boundary and continuity conditions emerge. These principles have a relatively simple structure and therefore offer the prospect of leading to finite-element formulations that can be used in the solution of realistic boundary-value problems.
Más información
Título según WOS: | ID WOS:000260424900003 Not found in local WOS DB |
Título de la Revista: | MATHEMATICS AND MECHANICS OF SOLIDS |
Volumen: | 13 |
Número: | 8 |
Editorial: | SAGE PUBLICATIONS LTD |
Fecha de publicación: | 2008 |
Página de inicio: | 725 |
Página final: | 745 |
DOI: |
10.1177/1081286507079832 |
Notas: | ISI |