Dynamic of cyclic automata over Z(2)
Abstract
Let K be the two-dimensional grid. Let q be an integer greater than 1 and let Q={0,...,q-1}. Let s:Q?Q be defined by s(?)=(?+1)modq, ??Q. In this work we study the following dynamic F on Q Z2. For xQZ2 we define Fv(x)=s(xv) if the state s(xv) appears in one of the four neighbors of v in K and Fv(x)=xv otherwise. For xQZ2, such that {vZ2:xv?0} is finite we prove that there exists a finite family of cycles such that the period of every vertex of K divides the lcm of their lengths. This is a generalization of the same result known for finite graphs. Moreover, we show that this upper bound is sharp. We prove that for every n?1 and every collection k1,...,kn of non-negative integers there exists ynQZ2 such that |{vZ2:ynv?0}|=O(k12+...+kn2) and the period of the vertex (0,0) is p·lcm{k1,...,kn}, for some even integer p. © 2004 Elsevier B.V. All rights reserved.
Más información
Título según WOS: | Dynamic of cyclic automata over Z(2) |
Título según SCOPUS: | Dynamic of cyclic automata over ?2 |
Título de la Revista: | THEORETICAL COMPUTER SCIENCE |
Volumen: | 322 |
Número: | 2 |
Editorial: | ELSEVIER SCIENCE BV |
Fecha de publicación: | 2004 |
Página de inicio: | 369 |
Página final: | 381 |
Idioma: | English |
DOI: |
10.1016/j.tcs.2004.03.018 |
Notas: | ISI, SCOPUS |