Average complexity of exact and approximate multiple string matching
Abstract
We show that the average number of characters examined to search for r random patterns of length m in a text of length n over a uniformly distributed alphabet of size ? cannot be less than ?(nlog?(rm)/ m). When we permit up to k insertions, deletions, and/or substitutions of characters in the occurrences of the patterns, the lower bound becomes ?(n(k+log?(rm))/m). This generalizes previous single-pattern lower bounds of Yao (for exact matching) and of Chang and Marr (for approximate matching), and proves the optimality of several existing multipattern search algorithms. © 2004 Elsevier B.V. All rights reserved.
Más información
| Título según WOS: | Average complexity of exact and approximate multiple string matching |
| Título según SCOPUS: | Average complexity of exact and approximate multiple string matching |
| Título de la Revista: | THEORETICAL COMPUTER SCIENCE |
| Volumen: | 321 |
| Número: | 02-mar |
| Editorial: | Elsevier |
| Fecha de publicación: | 2004 |
| Página de inicio: | 283 |
| Página final: | 290 |
| Idioma: | English |
| URL: | http://linkinghub.elsevier.com/retrieve/pii/S0304397504002154 |
| DOI: |
10.1016/j.tcs.2004.03.058 |
| Notas: | ISI, SCOPUS |