VECTOR BUNDLES NEAR NEGATIVE CURVES: MODULI AND LOCAL EULER CHARACTERISTIC

Ballico, E.; Gasparim, E.; Koeppe, T.

Abstract

We study moduli of vector bundles on a two-dimensional neighbourhood Z(k) of an irreducible curve l congruent to IP1 with l(2) = -k and give an explicit construction of their moduli stacks. For the case of instanton bundles, we stratify the stacks and construct moduli spaces. We give sharp bounds for the local holomorphic Euler characteristic of bundles on Zk and prove existence of families of bundles with prescribed numerical invariants. Our numerical calculations are performed using a Macaulay 2 algorithm, which is available for download at http://www.maths.ed.ac.uk/similar to s0571100/Instanton/.

Más información

Título según WOS: ID WOS:000270583700012 Not found in local WOS DB
Título de la Revista: COMMUNICATIONS IN ALGEBRA
Volumen: 37
Número: 8
Editorial: TAYLOR & FRANCIS INC
Fecha de publicación: 2009
Página de inicio: 2688
Página final: 2713
DOI:

10.1080/00927870802562351

Notas: ISI