Multiplicity of complex hypersurface singularities, Rouche satellites and Zariski's problem
Abstract
Let f, g : (C-n, 0) -> ((C, 0) be reduced germs of holomorphic functions. We show that f and g have the same multiplicity at 0, if and only if, there exist reduced germs f ' and g' analytically equivalent to f and g, respectively, such that f ' and g' satisfy a Rouche type inequality with respect to a generic `small' circle around 0. As an application, we give a reformulation of Zariski's multiplicity question and a partial positive answer to it. To cite this article: C. Eyral, E. Gasparim, C. R. Acad. Sci. Paris, Ser. 1 344 (2007). (c) 2007 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Más información
| Título según WOS: | ID WOS:000247771800005 Not found in local WOS DB |
| Título de la Revista: | COMPTES RENDUS MATHEMATIQUE |
| Volumen: | 344 |
| Número: | 10 |
| Editorial: | ACAD SCIENCES |
| Fecha de publicación: | 2007 |
| Página de inicio: | 631 |
| Página final: | 634 |
| DOI: |
10.1016/j.crma.2007.04.005 |
| Notas: | ISI |