Vector bundles on a neighborhood of an exceptional curve and elementary transformations

Ballico, E; Gasparim, E

Abstract

Let W be the germ of a smooth complex surface around an exceptional curve and let E be a rank 2 vector bundle on W. We study the cohomological properties of a finite sequence {E-i}(1less than or equal toiless than or equal tot) of rank 2 vector bundles canonically associated to E. We calculate numerical invariants of E in terms of the splitting types of E-i, 1less than or equal toiless than or equal tot. If S is a compact complex smooth surface and E is a rank two bundle on the blow-up of S at a point, we show that all values of c(2)(E) - c(2)(pi,(E)**) that'are numerically possible are actually attained.

Más información

Título según WOS: ID WOS:000181851600006 Not found in local WOS DB
Título de la Revista: FORUM MATHEMATICUM
Volumen: 15
Número: 1
Editorial: WALTER DE GRUYTER GMBH
Fecha de publicación: 2003
Página de inicio: 115
Página final: 122
DOI:

10.1515/form.2003.001

Notas: ISI