Vector bundles on a neighborhood of an exceptional curve and elementary transformations
Abstract
Let W be the germ of a smooth complex surface around an exceptional curve and let E be a rank 2 vector bundle on W. We study the cohomological properties of a finite sequence {E-i}(1less than or equal toiless than or equal tot) of rank 2 vector bundles canonically associated to E. We calculate numerical invariants of E in terms of the splitting types of E-i, 1less than or equal toiless than or equal tot. If S is a compact complex smooth surface and E is a rank two bundle on the blow-up of S at a point, we show that all values of c(2)(E) - c(2)(pi,(E)**) that'are numerically possible are actually attained.
Más información
| Título según WOS: | ID WOS:000181851600006 Not found in local WOS DB |
| Título de la Revista: | FORUM MATHEMATICUM |
| Volumen: | 15 |
| Número: | 1 |
| Editorial: | WALTER DE GRUYTER GMBH |
| Fecha de publicación: | 2003 |
| Página de inicio: | 115 |
| Página final: | 122 |
| DOI: |
10.1515/form.2003.001 |
| Notas: | ISI |