Entropy pairs and a local Abramov formula for a measure theoretical entropy of open covers
Abstract
Let (X, T) be a topological dynamical system and let ? be a T-invariant probability measure on X. In this paper, we study two properties of the notions of measure theoretical entropy for a measurable cover U, h?+(U, T) and h?-(U, T) introduced by P. P. Romagnoli (Ergod. Th. & Dynam. Sys. 23 (2003), 1601-1610). The main result of the paper states that entropy pairs for the measure ? can be defined using either h?+ or h?-. We also prove that both h?+ and h?- have an ergodic decomposition and we use it to prove a local Abramov formula for h?-.
Más información
Título según WOS: | Entropy pairs and a local Abramov formula for a measure theoretical entropy of open covers |
Título según SCOPUS: | Entropy pairs and a local Abramov formula for a measure theoretical entropy of open covers |
Título de la Revista: | ERGODIC THEORY AND DYNAMICAL SYSTEMS |
Volumen: | 24 |
Número: | 4 |
Editorial: | CAMBRIDGE UNIV PRESS |
Fecha de publicación: | 2004 |
Página de inicio: | 1127 |
Página final: | 1153 |
Idioma: | English |
URL: | http://www.journals.cambridge.org/abstract_S0143385704000161 |
DOI: |
10.1017/s0143385704000161 |
Notas: | ISI, SCOPUS |