Uniqueness for a weak nonlinear evolution equation and large deviations for diffusing particles with electrostatic repulsion

Fontbona, J

Abstract

We use hydrodynamics techniques to study the large deviations properties of the McKean-Vlasov model with singular interactions introduced by Cépa and Lépingle (Probab. Theory Related Fields 107 (1997) 429). In a general framework, we prove upper bounds and exponential tightness, and study the action functional. The study of lower bounds is much harder and requires a uniqueness result for a class of nonlinear evolution equations. In the case of interacting Ornstein-Uhlenbeck particles, we prove a general uniqueness statement by extending techniques of Cabannal-Duvillard and Guionnet (Ann. Probab. 29 (2001) 1205). Using this result we deduce some lower bounds for interacting particles with constant diffusion coefficient and general drift terms. © 2004 Elsevier B.V. All rights reserved.

Más información

Título según WOS: Uniqueness for a weak nonlinear evolution equation and large deviations for diffusing particles with electrostatic repulsion
Título según SCOPUS: Uniqueness for a weak nonlinear evolution equation and large deviations for diffusing particles with electrostatic repulsion
Título de la Revista: STOCHASTIC PROCESSES AND THEIR APPLICATIONS
Volumen: 112
Número: 1
Editorial: Elsevier
Fecha de publicación: 2004
Página de inicio: 119
Página final: 144
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0304414904000183
DOI:

10.1016/j.spa.2004.01.008

Notas: ISI, SCOPUS