Uniqueness for a weak nonlinear evolution equation and large deviations for diffusing particles with electrostatic repulsion
Abstract
We use hydrodynamics techniques to study the large deviations properties of the McKean-Vlasov model with singular interactions introduced by Cépa and Lépingle (Probab. Theory Related Fields 107 (1997) 429). In a general framework, we prove upper bounds and exponential tightness, and study the action functional. The study of lower bounds is much harder and requires a uniqueness result for a class of nonlinear evolution equations. In the case of interacting Ornstein-Uhlenbeck particles, we prove a general uniqueness statement by extending techniques of Cabannal-Duvillard and Guionnet (Ann. Probab. 29 (2001) 1205). Using this result we deduce some lower bounds for interacting particles with constant diffusion coefficient and general drift terms. © 2004 Elsevier B.V. All rights reserved.
Más información
Título según WOS: | Uniqueness for a weak nonlinear evolution equation and large deviations for diffusing particles with electrostatic repulsion |
Título según SCOPUS: | Uniqueness for a weak nonlinear evolution equation and large deviations for diffusing particles with electrostatic repulsion |
Título de la Revista: | STOCHASTIC PROCESSES AND THEIR APPLICATIONS |
Volumen: | 112 |
Número: | 1 |
Editorial: | Elsevier |
Fecha de publicación: | 2004 |
Página de inicio: | 119 |
Página final: | 144 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0304414904000183 |
DOI: |
10.1016/j.spa.2004.01.008 |
Notas: | ISI, SCOPUS |