Phosphodiesterase 7 Inhibition Induces Dopaminergic Neurogenesis in Hemiparkinsonian Rats

Morales-Garcia, Jose A.; Alonso-Gil, Sandra; Gil, Carmen; Martinez, Ana; Santos, Angel; Perez-Castillo, Ana

Abstract

Parkinson's disease is characterized by a loss of dopaminergic neurons in a specific brain region, the ventral midbrain. Parkinson's disease is diagnosed when approximately 50% of the dopaminergic neurons of the substantia nigra pars compacta (SNpc) have degenerated and the others are already affected by the disease. Thus, it is conceivable that all therapeutic strategies, aimed at neuroprotection, start too late. Therefore, an urgent medical need exists to discover new pharmacological targets and novel drugs with disease-modifying properties. In this regard, modulation of endogenous adult neurogenesis toward a dopaminergic phenotype might provide a new strategy to target Parkinson's disease by partially ameliorating the dopaminergic cell loss that occurs in this disorder. We have previously shown that a phosphodiesterase 7 (PDE7) inhibitor, S14, exerts potent neuroprotective and anti-inflammatory effects in different rodent models of Parkinson's disease, indicating that this compound could represent a novel therapeutic agent to stop the dopaminergic cell loss that occurs during the progression of the disease. In this report we show that, in addition to its neuroprotective effect, the PDE7 inhibitor S14 is also able to induce endogenous neuroregenerative processes toward a dopaminergic phenotype. We describe a population of actively dividing cells that give rise to new neurons in the SN pc of hemiparkinsonian rats after treatment with S14. In conclusion, our data identify S14 as a novel regulator of dopaminergic neuron generation.

Más información

Título según WOS: ID WOS:000356121600004 Not found in local WOS DB
Título de la Revista: STEM CELLS TRANSLATIONAL MEDICINE
Volumen: 4
Número: 6
Editorial: OXFORD UNIV PRESS
Fecha de publicación: 2015
Página de inicio: 564
Página final: 575
DOI:

10.5966/sctm.2014-0277

Notas: ISI