Positive radial solutions to a 'semilinear' equation involving the Pucci's operator

Felmer, PL; Quaas, A

Abstract

In this article we prove existence of positive radially symmetric solutions for the nonlinear elliptic equation A formula is presented. where M?,?+ denotes the Pucci's extremal operator with parameters 0 < ? ? ? and BR is the ball of radius R in RN, N ? 3. The result applies to a wide class of nonlinear functions f, including the important model cases: (i) ? = 1 and f (s) = sp, 1 <p <p*+. (ii) ? = 0, f (s) = ?s + sp, 1 <p <p*+ and 0 ? ? < ?1+. Here p*+ is critical exponent for M?,?+ and ?1+, is the first eigenvalue of M?,?+ in BR. Analogous results are obtained for the operator M?,?-. © 2004 Published by Elsevier Inc.

Más información

Título según WOS: Positive radial solutions to a 'semilinear' equation involving the Pucci's operator
Título según SCOPUS: Positive radial solutions to a 'semilinear' equation involving the Pucci's operator
Título de la Revista: JOURNAL OF DIFFERENTIAL EQUATIONS
Volumen: 199
Número: 2
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2004
Página de inicio: 376
Página final: 393
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0022039604000385
DOI:

10.1016/j.jde.2004.01.001

Notas: ISI, SCOPUS