Positive radial solutions to a 'semilinear' equation involving the Pucci's operator
Abstract
In this article we prove existence of positive radially symmetric solutions for the nonlinear elliptic equation A formula is presented. where M?,?+ denotes the Pucci's extremal operator with parameters 0 < ? ? ? and BR is the ball of radius R in RN, N ? 3. The result applies to a wide class of nonlinear functions f, including the important model cases: (i) ? = 1 and f (s) = sp, 1 <p <p*+. (ii) ? = 0, f (s) = ?s + sp, 1 <p <p*+ and 0 ? ? < ?1+. Here p*+ is critical exponent for M?,?+ and ?1+, is the first eigenvalue of M?,?+ in BR. Analogous results are obtained for the operator M?,?-. © 2004 Published by Elsevier Inc.
Más información
Título según WOS: | Positive radial solutions to a 'semilinear' equation involving the Pucci's operator |
Título según SCOPUS: | Positive radial solutions to a 'semilinear' equation involving the Pucci's operator |
Título de la Revista: | JOURNAL OF DIFFERENTIAL EQUATIONS |
Volumen: | 199 |
Número: | 2 |
Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Fecha de publicación: | 2004 |
Página de inicio: | 376 |
Página final: | 393 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0022039604000385 |
DOI: |
10.1016/j.jde.2004.01.001 |
Notas: | ISI, SCOPUS |