Nonlinear diffusions, hypercontractivity and the optimal L-P-Euclidean logarithmic Sobolev inequality
Abstract
The equation ut = ?p (u1/(p-1)) for p >1 is a nonlinear generalization of the heat equation which is also homogeneous, of degree 1. For large time asymptotics, its links with the optimal Lp-Euclidean logarithmic Sobolev inequality have recently been investigated. Here we focus on the existence and the uniqueness of the solutions to the Cauchy problem and on the regularization properties (hypercontractivity and ultracontractivity) of the equation using the Lp-Euclidean logarithmic Sobolev inequality. A large deviation result based on a Hamilton-Jacobi equation and also related to the Lp-Euclidean logarithmic Sobolev inequality is then stated. © 2003 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | Nonlinear diffusions, hypercontractivity and the optimal L-P-Euclidean logarithmic Sobolev inequality |
Título según SCOPUS: | Nonlinear diffusions, hypercontractivity and the optimal LP-Euclidean logarithmic Sobolev inequality |
Título de la Revista: | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS |
Volumen: | 293 |
Número: | 2 |
Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Fecha de publicación: | 2004 |
Página de inicio: | 375 |
Página final: | 388 |
Idioma: | English |
DOI: |
10.1016/j.jmaa.2003.10.009 |
Notas: | ISI, SCOPUS |