On covariant phase space and the variational bicomplex
Abstract
The notion of a phase space in classical mechanics is well known. The extension of this concept to field theory however, is a challenging endeavor, and over the years numerous proposals for such a generalization have appeared in the literature. In this paper We review a Hamiltonian formulation of Lagrangian field theory based on an extension to infinite dimensions of J.-M. Souriau's symplectic approach to mechanics. Following G. Zuckerman, we state our results in terms of the modern geometric theory of differential equations and the variational bicomplex. As an elementary example, we construct a phase space for the Monge-Ampere equation. © 2004 Springer Science+Business Media, Inc.
Más información
Título según WOS: | On covariant phase space and the variational bicomplex |
Título según SCOPUS: | On covariant phase space and the variational bicomplex |
Título de la Revista: | INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS |
Volumen: | 43 |
Número: | 5 |
Editorial: | SPRINGER/PLENUM PUBLISHERS |
Fecha de publicación: | 2004 |
Página de inicio: | 1267 |
Página final: | 1286 |
Idioma: | English |
URL: | http://link.springer.com/10.1023/B:IJTP.0000048614.90426.2f |
DOI: |
10.1023/B:IJTP.0000048614.90426.2f |
Notas: | ISI, SCOPUS |