On covariant phase space and the variational bicomplex

Reyes, EG

Abstract

The notion of a phase space in classical mechanics is well known. The extension of this concept to field theory however, is a challenging endeavor, and over the years numerous proposals for such a generalization have appeared in the literature. In this paper We review a Hamiltonian formulation of Lagrangian field theory based on an extension to infinite dimensions of J.-M. Souriau's symplectic approach to mechanics. Following G. Zuckerman, we state our results in terms of the modern geometric theory of differential equations and the variational bicomplex. As an elementary example, we construct a phase space for the Monge-Ampere equation. © 2004 Springer Science+Business Media, Inc.

Más información

Título según WOS: On covariant phase space and the variational bicomplex
Título según SCOPUS: On covariant phase space and the variational bicomplex
Título de la Revista: INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
Volumen: 43
Número: 5
Editorial: SPRINGER/PLENUM PUBLISHERS
Fecha de publicación: 2004
Página de inicio: 1267
Página final: 1286
Idioma: English
URL: http://link.springer.com/10.1023/B:IJTP.0000048614.90426.2f
DOI:

10.1023/B:IJTP.0000048614.90426.2f

Notas: ISI, SCOPUS