Forecasting Daily Volume and Acuity of Patients in the Emergency Department
Abstract
This study aimed at analyzing the performance of four forecasting models in predicting the demand for medical care in terms of daily visits in an emergency department (ED) that handles high complexity cases, testing the influence of climatic and calendrical factors on demand behavior. We tested different mathematical models to forecast ED daily visits at Hospital de Clinicas de Porto Alegre (HCPA), which is a tertiary care teaching hospital located in Southern Brazil. Model accuracy was evaluated using mean absolute percentage error (MAPE), considering forecasting horizons of 1, 7, 14, 21, and 30 days. The demand time series was stratified according to patient classification using the Manchester Triage System's (MTS) criteria. Models tested were the simple seasonal exponential smoothing (SS), seasonal multiplicative Holt-Winters (SMHW), seasonal autoregressive integrated moving average (SARIMA), and multivariate autoregressive integrated moving average (MSARIMA). Performance of models varied according to patient classification, such that SS was the best choice when all types of patients were jointly considered, and SARIMA was the most accurate for modeling demands of very urgent (VU) and urgent (U) patients. The MSARIMA models taking into account climatic factors did not improve the performance of the SARIMA models, independent of patient classification.
Más información
Título según WOS: | ID WOS:000385067400001 Not found in local WOS DB |
Título de la Revista: | COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE |
Editorial: | HINDAWI LTD |
Fecha de publicación: | 2016 |
DOI: |
10.1155/2016/3863268 |
Notas: | ISI |