Sequential dynamics of high order polynomial automata networks: an application to the Erlang fixed-point equations

Hart, AG; Martínez, S.

Abstract

We present results concerning the sequential evolution of p-order polynomial, symmetric automata networks with monotone transition functions. In particular, any such network has a Lyapunov functional, that may, depending on the transition function of the network, be strictly Lyapunov, resulting in all limit cycles of its dynamical evolution in the sequential mode being fixed points. As an application, we use our results to show that it is always possible to solve, via sequential iteration, the Erlang fixed-point equations, an important fixed point problem which appears in the theory of teletraffic networks. © 2003 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Sequential dynamics of high order polynomial automata networks: an application to the Erlang fixed-point equations
Título según SCOPUS: Sequential dynamics of high order polynomial automata networks: An application to the Erlang fixed-point equations
Título de la Revista: APPLIED MATHEMATICS AND COMPUTATION
Volumen: 151
Número: 2
Editorial: Elsevier Science Inc.
Fecha de publicación: 2004
Página de inicio: 507
Página final: 522
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0096300303003588
DOI:

10.1016/S0096-3003(03)00358-8

Notas: ISI, SCOPUS