A decreasing sequence of upper bounds on the largest Laplacian eigenvalue of a graph

Rojo, O; Rojo, H

Abstract

Let G be a simple graph. In this paper, we obtain a sequence (b p)p=1? of upper bounds on the largest eigenvalue ?1(G) of the Laplacian matrix of G. Then, we show that this sequence converges to ?1(G) and that (b 2p)p=0? is a monotone strictly decreasing sequence except if G is a complete graph or G is a star graph or G is a regular complete bipartite graph. For these graphs, b p = ?1(G) for all p. The bounds b1 and b2 are discussed. © 2003 Elsevier Inc. All rights reserved.

Más información

Título según WOS: A decreasing sequence of upper bounds on the largest Laplacian eigenvalue of a graph
Título según SCOPUS: A decreasing sequence of upper bounds on the largest Laplacian eigenvalue of a graph
Título de la Revista: LINEAR ALGEBRA AND ITS APPLICATIONS
Volumen: 381
Número: 01-mar
Editorial: Elsevier Science Inc.
Fecha de publicación: 2004
Página de inicio: 97
Página final: 116
Idioma: English
DOI:

10.1016/j.laa.2003.10.026

Notas: ISI, SCOPUS