Stable functions and Vietoris' theorem
Abstract
An analytic function f(z) in the unit disc D is called stable if sn(f,·)/f ? 1/f holds for all for n ? ?0. Here sn stands for the nth partial sum of the Taylor expansion about the origin of f, and ? denotes the subordination of analytic functions in D. We prove that (1 - z ?, ? ? [-1, 1], are stable. The stability of (1 + z)/(1 - z) turns out to be equivalent to a famous result of Vietoris on non-negative trigonometric sums. We discuss some generalizations of these results, and related conjectures, always with an eye on applications to positivity results for trigonometric and other polynomials. © 2003 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | Stable functions and Vietoris' theorem |
Título según SCOPUS: | Stable functions and Vietoris' theorem |
Título de la Revista: | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS |
Volumen: | 291 |
Número: | 2 |
Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Fecha de publicación: | 2004 |
Página de inicio: | 596 |
Página final: | 604 |
Idioma: | English |
DOI: |
10.1016/j.jmaa.2003.11.035 |
Notas: | ISI, SCOPUS |