Optimal sampling for repeated binary measurements
Abstract
The authors consider the optimal design of sampling schedules for binary sequence data. They propose an approach which allows a variety of goals to be reflected in the utility function by including deterministic sampling cost, a term related to prediction, and if relevant, a term related to learning about a treatment effect. To this end, they use a nonparametric probability model relying on a minimal number of assumptions. They show how their assumption of partial exchangeability for the binary sequence of data allows the sampling distribution to be written as a mixture of homogeneous Markov chains of order k. The implementation follows the approach of Quintana & Müller (2004), which uses a Dirichlet process prior for the mixture.
Más información
| Título según WOS: | Optimal sampling for repeated binary measurements |
| Título según SCOPUS: | Optimal sampling for repeated binary measurements |
| Título de la Revista: | CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE |
| Volumen: | 32 |
| Número: | 1 |
| Editorial: | Wiley |
| Fecha de publicación: | 2004 |
| Página de inicio: | 73 |
| Página final: | 84 |
| Idioma: | English |
| URL: | http://doi.wiley.com/10.2307/3316000 |
| DOI: |
10.2307/3316000 |
| Notas: | ISI, SCOPUS |