Optimal sampling for repeated binary measurements
Abstract
The authors consider the optimal design of sampling schedules for binary sequence data. They propose an approach which allows a variety of goals to be reflected in the utility function by including deterministic sampling cost, a term related to prediction, and if relevant, a term related to learning about a treatment effect. To this end, they use a nonparametric probability model relying on a minimal number of assumptions. They show how their assumption of partial exchangeability for the binary sequence of data allows the sampling distribution to be written as a mixture of homogeneous Markov chains of order k. The implementation follows the approach of Quintana & Müller (2004), which uses a Dirichlet process prior for the mixture.
Más información
Título según WOS: | Optimal sampling for repeated binary measurements |
Título según SCOPUS: | Optimal sampling for repeated binary measurements |
Título de la Revista: | CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE |
Volumen: | 32 |
Número: | 1 |
Editorial: | WILEY-BLACKWELL |
Fecha de publicación: | 2004 |
Página de inicio: | 73 |
Página final: | 84 |
Idioma: | English |
URL: | http://doi.wiley.com/10.2307/3316000 |
DOI: |
10.2307/3316000 |
Notas: | ISI, SCOPUS |