Optimal sampling for repeated binary measurements

Quintana, FA; Muller P.

Abstract

The authors consider the optimal design of sampling schedules for binary sequence data. They propose an approach which allows a variety of goals to be reflected in the utility function by including deterministic sampling cost, a term related to prediction, and if relevant, a term related to learning about a treatment effect. To this end, they use a nonparametric probability model relying on a minimal number of assumptions. They show how their assumption of partial exchangeability for the binary sequence of data allows the sampling distribution to be written as a mixture of homogeneous Markov chains of order k. The implementation follows the approach of Quintana & Müller (2004), which uses a Dirichlet process prior for the mixture.

Más información

Título según WOS: Optimal sampling for repeated binary measurements
Título según SCOPUS: Optimal sampling for repeated binary measurements
Título de la Revista: CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE
Volumen: 32
Número: 1
Editorial: WILEY-BLACKWELL
Fecha de publicación: 2004
Página de inicio: 73
Página final: 84
Idioma: English
URL: http://doi.wiley.com/10.2307/3316000
DOI:

10.2307/3316000

Notas: ISI, SCOPUS