On the numerical analysis of a nonlinear elliptic problem via mixed-FEM and Lagrange multipliers

Barrios, TP; Gatica, GN; Gatica, LF

Abstract

We apply a mixed finite element method to solve a nonlinear second order elliptic equation in divergence form with mixed boundary conditions. Our approach introduces the trace of the solution on the Neumann boundary as a further unknown that acts also as a Lagrange multiplier. We show that the resulting variational formulation and an associated discrete scheme defined with Raviart-Thomas spaces are well posed, and derive the usual a priori estimates and the corresponding rate of convergence. In addition, we develop a Bank-Weiser type a posteriori error analysis and provide an implicit reliable and quasi-efficient estimate, and a fully explicit reliable one. Several numerical results illustrate the suitability of the explicit a posteriori estimate for the adaptive computation of the discrete solutions. © 2003 IMACS. Published by Elsevier B.V. All rights reserved.

Más información

Título según WOS: On the numerical analysis of a nonlinear elliptic problem via mixed-FEM and Lagrange multipliers
Título según SCOPUS: On the numerical analysis of a nonlinear elliptic problem via mixed-FEM and Lagrange multipliers
Título de la Revista: APPLIED NUMERICAL MATHEMATICS
Volumen: 48
Número: 2
Editorial: Elsevier
Fecha de publicación: 2004
Página de inicio: 135
Página final: 155
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0168927403001387
DOI:

10.1016/j.apnum.2003.08.001

Notas: ISI, SCOPUS