On the numerical analysis of a nonlinear elliptic problem via mixed-FEM and Lagrange multipliers
Abstract
We apply a mixed finite element method to solve a nonlinear second order elliptic equation in divergence form with mixed boundary conditions. Our approach introduces the trace of the solution on the Neumann boundary as a further unknown that acts also as a Lagrange multiplier. We show that the resulting variational formulation and an associated discrete scheme defined with Raviart-Thomas spaces are well posed, and derive the usual a priori estimates and the corresponding rate of convergence. In addition, we develop a Bank-Weiser type a posteriori error analysis and provide an implicit reliable and quasi-efficient estimate, and a fully explicit reliable one. Several numerical results illustrate the suitability of the explicit a posteriori estimate for the adaptive computation of the discrete solutions. © 2003 IMACS. Published by Elsevier B.V. All rights reserved.
Más información
Título según WOS: | On the numerical analysis of a nonlinear elliptic problem via mixed-FEM and Lagrange multipliers |
Título según SCOPUS: | On the numerical analysis of a nonlinear elliptic problem via mixed-FEM and Lagrange multipliers |
Título de la Revista: | APPLIED NUMERICAL MATHEMATICS |
Volumen: | 48 |
Número: | 2 |
Editorial: | Elsevier |
Fecha de publicación: | 2004 |
Página de inicio: | 135 |
Página final: | 155 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0168927403001387 |
DOI: |
10.1016/j.apnum.2003.08.001 |
Notas: | ISI, SCOPUS |