Semistrictly quasiconvex mappings and non-convex vector optimization
Abstract
This paper introduces a new class of non-convex vector functions strictly larger than that of P-quasiconvexity, with P ? ?m being the underlying ordering cone, called semistrictly ( [InlineMediaObject not available: see fulltext.] m \ -int P)-quasiconvex functions. This notion allows us to unify various results on existence of weakly efficient (weakly Pareto) optima. By imposing a coercivity condition we establish also the compactness of the set of weakly Pareto solutions. In addition, we provide various characterizations for the non-emptiness, convexity and compactness of the solution set for a subclass of quasiconvex vector optimization problems on the real-line. Finally, it is also introduced the notion of explicit ( [InlineMediaObject not available: see fulltext.] m \ -int P)-quasiconvexity (equivalently explicit (int P)-quasiconvexity) which plays the role of explicit quasiconvexity (quasiconvexity and semistrict quasiconvexity) of real-valued functions. © Springer-Verlag 2004.
Más información
Título según WOS: | Semistrictly quasiconvex mappings and non-convex vector optimization |
Título según SCOPUS: | Semistrictly quasiconvex mappings and non-convex vector optimization |
Título de la Revista: | MATHEMATICAL METHODS OF OPERATIONS RESEARCH |
Volumen: | 59 |
Número: | 1 |
Editorial: | SPRINGER HEIDELBERG |
Fecha de publicación: | 2004 |
Página de inicio: | 129 |
Página final: | 145 |
Idioma: | English |
URL: | http://link.springer.com/10.1007/s001860300321 |
DOI: |
10.1007/s001860300321 |
Notas: | ISI, SCOPUS |