On the computational power of max-min propagation neural networks

Estevez, PA; Okabe, Y

Abstract

We investigate the computational power of max-min propagation (MMP) neural networks, composed of neurons with maximum (Max) or minimum (Min) activation functions, applied over the weighted sums of inputs. The main results presented are that a single-layer MMP network can represent exactly any pseudo-Boolean function F:{0,1}n ? [0,1], and that two-layer MMP neural networks are universal approximators. In addition, it is shown that several well-known fuzzy min-max (FMM) neural networks, such as Simpson's FMM, are representable by MMP neural networks.

Más información

Título según WOS: On the computational power of max-min propagation neural networks
Título según SCOPUS: On the Computational Power of Max-Min Propagation Neural Networks
Título de la Revista: NEURAL PROCESSING LETTERS
Volumen: 19
Número: 1
Editorial: Springer
Fecha de publicación: 2004
Página de inicio: 11
Página final: 23
Idioma: English
DOI:

10.1023/B:NEPL.0000016837.13436.d3

Notas: ISI, SCOPUS