Cyclic extensions of Schottky uniformizations

Hidalgo, RA

Abstract

A conformal automorphism ? S ? S of a closed Riemann surface S of genus ? 2 is said to be of Schottky type if there is a Schottky uniformization of S for which ? lifts. In the case that ? is of Schottky type, we have associated a geometrically finite Kleinian group K, generated by the uniformizing Schottky group G and any of the liftings of ?. We have that K contains G as a normal subgroup and K/G is cyclic. In this note we describe, up to topological equivalence, all possible groups K obtained in this way. Equivalently, if we are given a handlebody M3 of genus p ? 2 and an orientation preserving homeomorphism of finite order ?, then we proceed to describe, up to topological equivalence, the hyperbolic structures of the orbifold M3/? having bounded by below injectivity radius.

Más información

Título según WOS: Cyclic extensions of Schottky uniformizations
Título según SCOPUS: Cyclic extensions of Schottky uniformizations
Título de la Revista: ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA
Volumen: 29
Número: 2
Editorial: SUOMALAINEN TIEDEAKATEMIA
Fecha de publicación: 2004
Página de inicio: 329
Página final: 344
Idioma: English
Notas: ISI, SCOPUS