Overproduction of trehalose: Heterologous expression of Escherichia coli trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in Corynebacterium glutamicum

Padilla L.; Kramer, R; Stephanopoulos, G; Agosin, E

Abstract

Trehalose is a disaccharide with potential applications in the biotechnology and food industries. We propose a method for industrial production of trehalose, based on improved strains of Corynebacterium glutamicum. This paper describes the heterologous expression of Escherichia coli trehalose-synthesizing enzymes trehalose-6-phosphate synthase (OtsA) and trehalose-6-phosphate phosphatase (OtsB) in C. glutamicum, as well as its impact on the trehalose biosynthetic rate and metabolic-flux distributions, during growth in a defined culture medium. The new recombinant strain showed a five- to sixfold increase in the activity of OtsAB pathway enzymes, compared to a control strain, as well as an almost fourfold increase in the trehalose excretion rate during the exponential growth phase and a twofold increase in the final titer of trehalose. The heterologous expression described resulted in a reduced specific glucose uptake rate and Krebs cycle flux, as well as reduced pentose pathway flux, a consequence of downregulated glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. The results proved the suitability of using the heterologous expression of Ots proteins in C. glutamicum to increase the trehalose biosynthetic rate and yield and suggest critical points for further improvement of trehalose overproduction in C. glutamicum.

Más información

Título según WOS: Overproduction of trehalose: Heterologous expression of Escherichia coli trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in Corynebacterium glutamicum
Título según SCOPUS: Overproduction of Trehalose: Heterologous Expression of Escherichia coli Trehalose-6-Phosphate Synthase and Trehalose-6-Phosphate Phosphatase in Corynebacterium glutamicum
Título de la Revista: APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Volumen: 70
Número: 1
Editorial: AMER SOC MICROBIOLOGY
Fecha de publicación: 2004
Página de inicio: 370
Página final: 376
Idioma: English
URL: http://aem.asm.org/cgi/doi/10.1128/AEM.70.1.370-376.2004
DOI:

10.1128/AEM.70.1.370-376.2004

Notas: ISI, SCOPUS