A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. Part II: a posteriori error analysis

Gatica, GN; Gonzalez, M.; Meddahi S.

Abstract

This is the second part of a work dealing with a low-order mixed finite element method for a class of nonlinear Stokes models arising in quasi-Newtonian fluids. In the first part we showed that the resulting variational formulation is given by a twofold saddle point operator equation, and that the corresponding Galerkin scheme becomes well posed with piecewise constant functions and Raviart-Thomas spaces of lowest order as the associated finite element subspaces. In this paper we develop a Bank-Weiser type a posteriori error analysis yielding a reliable estimate and propose the corresponding adaptive algorithm to compute the mixed finite element solutions. Several numerical results illustrating the efficiency of the method are also provided. © 2003 Elsevier B.V. All rights reserved.

Más información

Título según WOS: A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. Part II: a posteriori error analysis
Título según SCOPUS: A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. Part II: A posteriori error analysis
Título de la Revista: COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
Volumen: 193
Número: 09-nov
Editorial: ELSEVIER SCIENCE SA
Fecha de publicación: 2004
Página de inicio: 893
Página final: 911
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0045782503005930
DOI:

10.1016/j.cma.2003.11.008

Notas: ISI, SCOPUS