REGULATION OF ANTERIOR-PITUITARY GONADOTROPIN SUBUNIT MESSENGER-RNA LEVELS DURING THE PREOVULATORY GONADOTROPIN SURGE - A PHYSIOLOGICAL-ROLE OF PROGESTERONE IN REGULATING LH-BETA AND FSH-BETA MESSENGER-RNA LEVELS

BRANN, DW; OCONNER, JL; WADE, MF; ZAMORANO, PL; MAHESH, VB

Abstract

In a previous study we demonstrated that in the ovariectomized estrogen-primed immature rat, progesterone induced a gonadotropin surge while the gonadotropin mRNA subunit levels were either suppressed or unaltered. This observation has now been confirmed using more frequent time points. Progesterone administered at 0900 h was found to suppress LH-beta mRNA levels at 1300, 1400, and 0800 h the next day, with no subsequent effects at 1000, 1200 or 1600 h. FSH-beta mRNA levels were unaffected by progesterone except for a slight elevation at 1400 h and a suppression at 0800 h. Progesterone was either suppressive or had no effect on alpha mRNA levels. Since elevations in LH-beta and FSH-beta mRNA levels were observed in the cycling rat, the observed differences in the ovariectomized estrogen-primed rat could be due to a higher basal synthesis occurring due to ovariectomy. This was indeed the case because LH-beta and FSH-beta mRNA levels were 3.7- and 42.7-fold higher in such animals as compared to intact estrogen-primed rats. In contrast to the ovariectomized estrogen-primed rats, in intact estrogen-primed rats LH-beta mRNA levels were increased at 1000 h and FSH-beta mRNA levels were increased at 1000, 1200 and 1300 h after the administration of progesterone. In pregnant mare's serum gonadotropin-primed immature rats, LH-beta. FSH-beta and alpha-subunit mRNA levels were significantly elevated at 1800 and 2000 h, paralleling the serum LH and FSH surge. The progesterone antagonist RU486 (0.2 and 1.0 mg) significantly reduced serum LH and FSH levels at 2000 h. The lower dose reduced LH-beta and alpha-subunit mRNA levels at 2000 h and FSH-beta mRNA levels at 1800 h. The higher dose caused an increase in LH-beta mRNA levels at 1200 and 1800 h and a decrease in FSH-beta mRNA levels at 1800 and 2000 h. In conclusion, the present study provides evidence that preovulatory progesterone plays an important role in the increase in FSH-beta mRNA levels as well as the release of LH and FSH during the normal preovulatory gonadotropin surge. This relationship appears to be dependent on the ongoing rate of synthesis because this does not occur in the ovariectomized estrogen-primed rat in which synthesis is at a high basal level. Furthermore, the correlation with FSH appears to be tighter as compared to LH.

Más información

Título según WOS: ID WOS:A1993ME00300002 Not found in local WOS DB
Título de la Revista: JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY
Volumen: 46
Número: 4
Editorial: PERGAMON-ELSEVIER SCIENCE LTD
Fecha de publicación: 1993
Página de inicio: 427
Página final: 437
DOI:

10.1016/0960-0760(93)90097-G

Notas: ISI