A method for combining inference across related nonparametric Bayesian models

Muller P.; Quintana F.; Rosner, G.

Abstract

We consider the problem of combining inference in related nonparametric Bayes models. Analogous to parametric hierarchical models, the hierarchical extension formalizes borrowing strength across the related submodels. In the nonparametric context, modelling is complicated by the fact that the random quantities over which we define the hierarchy are infinite dimensional. We discuss a formal definition of such a hierarchical model. The approach includes a regression at the level of the nonparametric model. For the special case of Dirichlet process mixtures, we develop a Markov chain Monte Carlo scheme to allow efficient implementation of full posterior inference in the given model.

Más información

Título según WOS: A method for combining inference across related nonparametric Bayesian models
Título según SCOPUS: A method for combining inference across related nonparametric Bayesian models
Título de la Revista: JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
Volumen: 66
Número: 3
Editorial: WILEY-BLACKWELL
Fecha de publicación: 2004
Página de inicio: 735
Página final: 749
Idioma: English
URL: http://doi.wiley.com/10.1111/j.1467-9868.2004.05564.x
DOI:

10.1111/j.1467-9868.2004.05564.x

Notas: ISI, SCOPUS