Anomalous diffusion associated with nonlinear fractional derivative Fokker-Planck-like equation: Exact time-dependent solutions
Abstract
We consider the d=1 nonlinear Fokker-Planck-like equation with fractional derivatives (partial derivative/partial derivative t)P(x,t) =D(partial derivative(gamma)/partial derivative x(gamma))[P(x,t)](nu). Exact time-dependent solutions are found for nu=(2- gamma)/(1 + gamma)(-infinity y less than or equal to 2). By considering the long-distance asymptotic behavior of these solutions, a connection is established, namely, q =(gamma+ 3)/(y + 1)(0than or equal to 2), with the solutions optimizing the nonextensive entropy characterized by index q. Interestingly enough, this relation coincides with the one already known for Levy-like superdiffusion (i.e., nu = 1 and 0than or equal to 2). Finally, for (gamma,nu)=(2,0) we obtain q=5/3, which differs from the value q=2 corresponding to the gamma=2 solutions available in the literature (nu1 porous medium equation), thus exhibiting nonuniform convergence.
Más información
Título según WOS: | ID WOS:000088960600086 Not found in local WOS DB |
Título de la Revista: | PHYSICAL REVIEW E |
Volumen: | 62 |
Número: | 2 |
Editorial: | AMER PHYSICAL SOC |
Fecha de publicación: | 2000 |
Página de inicio: | 2213 |
Página final: | 2218 |
DOI: |
10.1103/PhysRevE.62.2213 |
Notas: | ISI |