Extensive Recombination of a Yeast Diploid Hybrid through Meiotic Reversion

Laureau, Raphaelle; Loeillet, Sophie; Salinas, Francisco; Bergstroem, Anders; Legoix-Ne, Patricia; Liti, Gianni; Nicolas, Alain

Abstract

In somatic cells, recombination between the homologous chromosomes followed by equational segregation leads to loss of heterozygosity events (LOH), allowing the expression of recessive alleles and the production of novel allele combinations that are potentially beneficial upon Darwinian selection. However, inter-homolog recombination in somatic cells is rare, thus reducing potential genetic variation. Here, we explored the property of S. cerevisiae to enter the meiotic developmental program, induce meiotic Spo11-dependent double-strand breaks genome-wide and return to mitotic growth, a process known as Return To Growth (RTG). Whole genome sequencing of 36 RTG strains derived from the hybrid S288c/SK1 diploid strain demonstrates that the RTGs are bona fide diploids with mosaic recombined genome, derived from either parental origin. Individual RTG genome-wide genotypes are comprised of 5 to 87 homozygous regions due to the loss of heterozygous (LOH) events of various lengths, varying between a few nucleotides up to several hundred kilobases. Furthermore, we show that reiteration of the RTG process shows incremental increases of homozygosity. Phenotype/genotype analysis of the RTG strains for the auxotrophic and arsenate resistance traits validates the potential of this procedure of genome diversification to rapidly map complex traits loci (QTLs) in diploid strains without undergoing sexual reproduction.

Más información

Título según WOS: ID WOS:000372554100008 Not found in local WOS DB
Título de la Revista: PLoS Genetics
Volumen: 12
Número: 2
Editorial: PUBLIC LIBRARY SCIENCE
Fecha de publicación: 2016
DOI:

10.1371/journal.pgen.1005781

Notas: ISI