On convolutions of Siegel modular forms

Imamoglu, O; Martin Y.

Abstract

In this article we study a Rankin-Selberg convolution of n complex variables for pairs of degree n Siegel cusp forms. We establish its analytic continuation to ?n, determine its functional equations and find its singular curves. Also, we introduce and get similar results for a convolution of degree n Jacobi cusp forms. Furthermore, we show how the relation of a Siegel cusp form and its Fourier-Jacobi coefficients is reflected in a particular relation connecting the two convolutions studied in this paper. As a consequence, the Dirichlet series introduced by Kalinin [7] and Yamazaki [19] are obtained as particular cases. As another application we generalize to any degree the estimate on the size of Fourier coefficients given in [14]. © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Más información

Título según WOS: On convolutions of Siegel modular forms
Título según SCOPUS: On convolutions of Siegel modular forms
Título de la Revista: MATHEMATISCHE NACHRICHTEN
Volumen: 273
Editorial: WILEY-V C H VERLAG GMBH
Fecha de publicación: 2004
Página de inicio: 75
Página final: 95
Idioma: English
URL: http://doi.wiley.com/10.1002/mana.200310197
DOI:

10.1002/mana.200310197

Notas: ISI, SCOPUS