On convolutions of Siegel modular forms
Abstract
In this article we study a Rankin-Selberg convolution of n complex variables for pairs of degree n Siegel cusp forms. We establish its analytic continuation to ?n, determine its functional equations and find its singular curves. Also, we introduce and get similar results for a convolution of degree n Jacobi cusp forms. Furthermore, we show how the relation of a Siegel cusp form and its Fourier-Jacobi coefficients is reflected in a particular relation connecting the two convolutions studied in this paper. As a consequence, the Dirichlet series introduced by Kalinin [7] and Yamazaki [19] are obtained as particular cases. As another application we generalize to any degree the estimate on the size of Fourier coefficients given in [14]. © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Más información
Título según WOS: | On convolutions of Siegel modular forms |
Título según SCOPUS: | On convolutions of Siegel modular forms |
Título de la Revista: | MATHEMATISCHE NACHRICHTEN |
Volumen: | 273 |
Editorial: | WILEY-V C H VERLAG GMBH |
Fecha de publicación: | 2004 |
Página de inicio: | 75 |
Página final: | 95 |
Idioma: | English |
URL: | http://doi.wiley.com/10.1002/mana.200310197 |
DOI: |
10.1002/mana.200310197 |
Notas: | ISI, SCOPUS |