SIRT1 protects dendrites, mitocondria and synapses from Aβ oligomers in hippocampal neurons.
Keywords: neurodegeneration, cell signaling, Alzheimer’s disease
Abstract
Aging is a major risk factor in the onset of neurodegenerative diseases, such as Alzheimer’s disease (AD). SIRT1, a β-NAD+-dependent histone deacetylase activity, holds great potential for promoting longevity, preventing against disease and increasing cell survival. We report here, that SIRT1 protects against the damage caused by Aβ oligomers at the level of synaptic contacts, dendritic branching and mitochondrial structure in cultured rat hippocampal neurons. Neurons overexpressing SIRT1 showed increased synaptic contacts, dendritic branching and preserved mitochondrial morphology, suggesting the prevention of the Aβ oligomer-mediated neurodegeneration. Such effects were not observed in neurons overexpressing a dominant negative form of SIRT1. The potential underlying signaling pathways involved in the SIRT1 neuroprotective mechanism are discussed in the context of the peroxisome proliferator-activated receptors (PPARs), peroxisome proliferator activated receptor co-activator 1α (PGC-1α), mTOR, and the Wnt signaling pathway. Our results suggest that SIRT1 modulation might well be a therapeutic agent to protect against neurodegenerative diseases, like AD.
Más información
Título de la Revista: | J Alzheimer Dis Parkinsonism. |
Volumen: | 3 |
Fecha de publicación: | 2013 |
Página de inicio: | 126 |
Página final: | 134 |
Idioma: | inglés |
DOI: |
DOI: 10.4172/2161-0460.1000126 |