A likely planet-induced gap in the disc around T Cha

Hendler, Nathanial P.; Pinilla, Paola; Pascucci, Ilaria; Pohl, Adriana; Mulders, Gijs; Henning, Thomas; Dong, Ruobing; Clarke, Cathie; Owen, James; Hollenbach, David

Abstract

We present high-resolution (0.11 x 0.06 arcsec(2)) 3mm ALMA observations of the highly inclined transition disc around the star T Cha. Our continuum image reveals multiple dust structures: an inner disc, a spatially resolved dust gap, and an outer ring. When fitting sky-brightness models to the real component of the 3mm visibilities, we infer that the inner emission is compact (= 1 au in radius), the gap width is between 18 and 28 au, and the emission from the outer ring peaks at similar to 36 au. We compare our ALMA image with previously published 1.6 mu m VLT/SPHERE imagery. This comparison reveals that the location of the outer ring is wavelength dependent. More specifically, the peak emission of the 3mm ring is at a larger radial distance than that of the 1.6 mu m ring, suggesting that millimeter-sized grains in the outer disc are located farther away from the central star than micron-sized grains. We discuss different scenarios to explain our findings, including dead zones, star-driven photoevaporation, and planet-disc interactions. We find that the most likely origin of the dust gap is from an embedded planet, and estimate - for a single planet scenario - that TCha's gap is carved by a 1.2M(Jup) planet.

Más información

Título según WOS: ID WOS:000438222600014 Not found in local WOS DB
Título de la Revista: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volumen: 475
Número: 1
Editorial: OXFORD UNIV PRESS
Fecha de publicación: 2018
Página de inicio: L62
Página final: L66
DOI:

10.1093/mnrasl/slx184

Notas: ISI