An ultraweak formulation of the Reissner-Mindlin plate bending model and DPG approximation

Fuhrer, Thomas; Heuer, Norbert; Sayas, Francisco-Javier

Abstract

We develop and analyze an ultraweak variational formulation of the Reissner-Mindlin plate bending model both for the clamped and the soft simply supported cases. We prove well-posedness of the formulation, uniformly with respect to the plate thickness t. We also prove weak convergence of the Reissner-Mindlin solution to the solution of the corresponding Kirchhoff-Love model when t -> 0. Based on the ultraweak formulation, we introduce a discretization of the discontinuous Petrov-Galerkin type with optimal test functions (DPG) and prove its uniform quasi-optimal convergence. Our theory covers the case of non-convex polygonal plates. A numerical experiment for some smooth model solutions with fixed load confirms that our scheme is locking free.

Más información

Título según WOS: An ultraweak formulation of the Reissner-Mindlin plate bending model and DPG approximation
Título de la Revista: NUMERISCHE MATHEMATIK
Volumen: 145
Número: 2
Editorial: SPRINGER HEIDELBERG
Fecha de publicación: 2020
DOI:

10.1007/S00211-020-01116-0

Notas: ISI