DIFFUSION IN MOMENTUM SPACE FOR SYSTEMS IN A RANDOM TIME-DEPENDENT ELECTRIC-FIELD - THE 1D HYDROGEN-ATOM
Abstract
It is argued that diffusion in momentum space exists for ID quantum systems (H0 = p2 + V(x)) in a random external electric wavefield (Fb(t)x). In the high-field regime, a diffusion type equation is found explicitly for the probability density. In this regime, diffusion is a consequence of randomization in the quantum system. Particularly, this result is also valid for the ID hydrogen atom in a random wavefield. So the interference phenomenon, which is a typical property in quantum systems, is disturbed by randomization. This could have important inferences in the phenomenon known as quantum suppression of classical chaos where interference gives dynamical localization.
Más información
Título según WOS: | ID WOS:A1992JA38800004 Not found in local WOS DB |
Título de la Revista: | JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL |
Volumen: | 25 |
Número: | 12 |
Editorial: | IOP PUBLISHING LTD |
Fecha de publicación: | 1992 |
Página de inicio: | L727 |
Página final: | L732 |
DOI: |
10.1088/0305-4470/25/12/004 |
Notas: | ISI |