The dynamics of rings around Centaurs and Trans-Neptunian Objects

Sicardy, Bruno; Renner, Stefan; Leiva, Rodrigo; Roques, Françoise; El Moutamid, Maryame; Santos-Sanz, Pablo; Desmars, Josselin; Prialnik, Dina; Barucci, M. Antonietta; Young, Leslie

Keywords: kuiper belt, solar system, tnos

Abstract

Since 2013, dense and narrow rings are known around the small Centaur object Chariklo and the dwarf planet Haumea. Dense material has also been detected around the Centaur Chiron, although its nature is debated. This is the first time ever that rings are observed elsewhere than around the giant planets, suggesting that those features are more common than previously thought. The origins of those rings remain unclear. In particular, it is not known if the same generic process can explain the presence of material around Chariklo, Chiron, Haumea, or if each object has a very different history. Nonetheless, a specific aspect of small bodies is that they may possess a non-axisymmetric shape (topographic features and or elongation) that are essentially absent in giant planets. This creates strong resonances between the spin rate of the object and the mean motion of ring particles. In particular, Lindblad-type resonances tend to clear the region around the corotation (or synchronous) orbit, where the particles orbital period matches that of the body. Whatever the origin of the ring is, modest topographic features or elongations of Chariklo and Haumea explain why their rings should be found beyond the outermost 1/2 resonance, where the particles complete one revolution while the body completes two rotations. Comparison of the resonant locations relative to the Roche limit of the body shows that fast rotators are favored for being surrounded by rings. We discuss in more details the phase portraits of the 1/2 and 1/3 resonances, and the consequences of a ring presence on satellite formation.

Más información

Editorial: Elsevier
Fecha de publicación: 2020
Página de inicio: 249
Página final: 269
Idioma: English
URL: https://www.sciencedirect.com/science/article/pii/B9780128164907000114
DOI:

10.1016/B978-0-12-816490-7.00011-4