200K+ Crowdsourced Political Arguments for a New Chilean Constitution

Fierro C.; Fuentes C.; Perez J.; Quezada M.

Abstract

In this paper we present the dataset of 200,000+ political arguments produced in the local phase of the 2016 Chilean constitutional process. We describe the human processing of this data by the government officials, and the manual tagging of arguments performed by members of our research group. Afterwards we focus on classification tasks that mimic the human processes, comparing linear methods with neural network architectures. The experiments show that some of the manual tasks are suitable for automatization. In particular, the best methods achieve a 90% top-5 accuracy in a multi-class classification of arguments, and 65% macro-averaged F1-score for tagging arguments according to a three-part argumentation model.

Más información

Editorial: Association for Computational Linguistics
Fecha de publicación: 2017
Año de Inicio/Término: Semtember, 8, 2017
Página de inicio: 1
Página final: 10
Idioma: Inglés
Financiamiento/Sponsor: Association for Computational Linguistics
URL: https://www.aclweb.org/anthology/W17-5101