Dynamical properties of the tent map
Abstract
Tent maps are continuous composites of two linear functions that act on the unit interval. In the present paper, we describe and analyse a connection between dynamical systems induced by tent maps and the dynamics induced by a certain type of beta-expansion. This relation, which is a weaker form of measure-theoretical conjugacy of dynamical systems, allows us to transfer statements concerning the periodicity of orbits, but it turns out that the underlying symbolic dynamical systems are not connected via a finite state transducer.
Más información
| Título según WOS: | ID WOS:000374188000003 Not found in local WOS DB |
| Título de la Revista: | JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES |
| Volumen: | 93 |
| Editorial: | Wiley |
| Fecha de publicación: | 2016 |
| Página de inicio: | 319 |
| Página final: | 340 |
| DOI: |
10.1112/jlms/jdv071 |
| Notas: | ISI |