Generalized Schroder matrix and its combinatorial interpretation
Abstract
In the present article, we introduce a new family of matrices that generalizes the Schroder matrices of the first and the second kind, then we show that these matrices are connected to inverse generalized Delannoy matrices. We also give a combinatorial interpretation of these new matrices by using a family of weighted lattice paths whose step set is with the additional property that the paths do not fall below the line and the last step of the paths are not horizontal.
Más información
Título según WOS: | ID WOS:000423695200016 Not found in local WOS DB |
Título de la Revista: | LINEAR MULTILINEAR ALGEBRA |
Volumen: | 66 |
Número: | 2 |
Editorial: | TAYLOR & FRANCIS LTD |
Fecha de publicación: | 2018 |
Página de inicio: | 418 |
Página final: | 433 |
DOI: |
10.1080/03081087.2017.1301360 |
Notas: | ISI |