Detectability and Invariance Properties for Set Dynamical Systems
Abstract
Invariance properties and convergence of solutions of set dynamical systems are studied. Using a framework for systems with set-valued states, notions of stability and detectability, similar to the existing results for classical dynamical systems, are defined and used to obtain information about the convergence properties of solutions. In particular, it is shown that local stability, detectability, and boundedness can be combined to conclude convergence of set-valued solutions. Under the assumption of bounded solutions and outer semicontinuity of the set-valued maps that define the systems dynamics, invariance properties for set dynamical systems are also presented along with an invariance principle. The invariance principle involves the use of Lyapunov-like functions to locate invariant sets. Examples illustrate the results. (C) 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Más información
Título según WOS: | ID WOS:000401244000172 Not found in local WOS DB |
Título de la Revista: | IFAC PAPERSONLINE |
Volumen: | 49 |
Número: | 18 |
Editorial: | Elsevier |
Fecha de publicación: | 2016 |
Página de inicio: | 1030 |
Página final: | 1035 |
DOI: |
10.1016/j.ifacol.2016.10.303 |
Notas: | ISI |