Front propagation steered by a high-wavenumber modulation: Theory and experiments

Alfaro-Bittner, K.; Castillo-Pinto, C.; Clerc, M. G.; Gonzalez-Cortes, G.; Jara-Schulz, G.; Rojas, R. G.

Abstract

Homogeneously driven dynamical systems exhibit multistability. Depending on the initial conditions, fronts present a rich dynamical behavior between equilibria. Qualitatively, this phenomenology is persistent under spatially modulated forcing. However, the understanding of equilibria and front dynamics organization is not fully established. Here, we investigate these phenomena in the high-wavenumber limit. Based on a model that describes the reorientation transition of a liquid crystal light valve with spatially modulated optical forcing and the homogenization method, equilibria and fronts as a function of forcing parameters are studied. The forcing induces patterns coexisting with the uniform state in regions where the system without forcing is monostable. The front dynamics is characterized theoretically and numerically. Experimental results verify these phenomena and the law describing bistability, showing quite good agreement. Published under license by AIP Publishing.

Más información

Título según WOS: Front propagation steered by a high-wavenumber modulation: Theory and experiments
Título de la Revista: CHAOS
Volumen: 30
Número: 5
Editorial: AIP Publishing
Fecha de publicación: 2020
DOI:

10.1063/5.0003519

Notas: ISI