Segmentation of HER2 protein overexpression in immunohistochemically stained breast cancer images using Support Vector Machines
Keywords: deconvolution, breast cancer, Haralick features, HER2 overexpression, IHC stain, Support Vecto Machine
Abstract
In this paper we study the segmentation of HER2 overexpression in IHC stained breast cancer tissue images using a support vector machine (SVM) classifier. We asses the SVM performance using diverse color and texture pixel-level features including the RGB, CMYK, HSV, CIE L*a*b* color spaces, color deconvolution filter and Haralick features. We measure classification performance for three datasets containing a total of 153 IHC images that were previously labeled by a pathologist.
Más información
Título de la Revista: | Journal of Physics |
Volumen: | 762 |
Número: | 1 |
Editorial: | IOP PUBLISHING LTD |
Fecha de publicación: | 2016 |
Idioma: | English |
Financiamiento/Sponsor: | FONDECYT; UTFSM; CCTVal |
URL: | http://iopscience.iop.org/article/10.1088/1742-6596/762/1/012050 |
Notas: | SCOPUS |