Universal convexity and universal starlikeness of polylogarithms.

Bakan, Andrew; Ruscheweyh, Stephan; Salinas, Luis

Keywords: polylogarithms, convex functions, pick functions, universally convex functions, Universally starlike functions

Abstract

A deep result of J. Lewis (1983) shows that the polylogarithms $ Li_\alpha (z)$ $ :=$ $ \sum _{k=1}^{\infty }z^k/k^\alpha $ map the open unit disk $ \mathbb{D} $ centered at the origin one-to-one onto convex domains for all $ \alpha \geq 0$. In the present paper this result is generalized to the so-called universal convexity and universal starlikeness (with respect to the origin) in the slit-domain $ \Lambda := \mathbb{C}\setminus [1,\infty )$, introduced by S. Ruscheweyh, L. Salinas and T. Sugawa (2009). This settles a conjecture made in that work and proves, in particular, that $ Li_\alpha (z)$ maps an arbitrary open disk or half-plane in $ \Lambda $ one-to-one onto a convex domain for every $ \alpha \geq 1$.

Más información

Título de la Revista: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
Volumen: 143
Número: 2
Editorial: American Mathematical Society
Fecha de publicación: 2015
Página de inicio: 717
Página final: 729
Idioma: English
Financiamiento/Sponsor: FONDECYT; UTFSM; CCTVal
URL: https://doi.org/10.1090/S0002-9939-2014-12262-3
Notas: ISI, SCOPUS