On the Lefschetz zeta function and the minimal sets of Lefschetz periods for Morse-Smale diffeomorphisms on products of l-spheres
Abstract
We provide a general formula and give an explicit expression of the Lefschetz zeta function for any quasi-unipotent map on the space X = S-l x ... x (sic) n-times S-l, with l > 1. Among the quasi-unipotent maps are Morse-Smale diffeomorphisms. The Lefschetz zeta function is used to characterize the minimal set of Lefschetz periods for Morse-Smale diffeomorphisms on X; we completely describe this set, for families containing infinitely many Morse-Smale diffeomorphisms. The results of the present article are based on the techniques used in [5], in the computation of the Lefschetz zeta function for quasi-unipotent self maps on the n-dimensional torus. (C) 2017 Elsevier B.V. All rights reserved.
Más información
Título según WOS: | ID WOS:000426021900028 Not found in local WOS DB |
Título de la Revista: | TOPOLOGY AND ITS APPLICATIONS |
Volumen: | 235 |
Editorial: | ELSEVIER SCIENCE BV |
Fecha de publicación: | 2018 |
Página de inicio: | 428 |
Página final: | 444 |
DOI: |
10.1016/j.topol.2017.12.023 |
Notas: | ISI |