On the Lefschetz zeta function and the minimal sets of Lefschetz periods for Morse-Smale diffeomorphisms on products of l-spheres

Berrizbeitia, Pedro; Gonzalez, Marcos J.; Sirvent, Victor F.

Abstract

We provide a general formula and give an explicit expression of the Lefschetz zeta function for any quasi-unipotent map on the space X = S-l x ... x (sic) n-times S-l, with l > 1. Among the quasi-unipotent maps are Morse-Smale diffeomorphisms. The Lefschetz zeta function is used to characterize the minimal set of Lefschetz periods for Morse-Smale diffeomorphisms on X; we completely describe this set, for families containing infinitely many Morse-Smale diffeomorphisms. The results of the present article are based on the techniques used in [5], in the computation of the Lefschetz zeta function for quasi-unipotent self maps on the n-dimensional torus. (C) 2017 Elsevier B.V. All rights reserved.

Más información

Título según WOS: ID WOS:000426021900028 Not found in local WOS DB
Título de la Revista: TOPOLOGY AND ITS APPLICATIONS
Volumen: 235
Editorial: ELSEVIER SCIENCE BV
Fecha de publicación: 2018
Página de inicio: 428
Página final: 444
DOI:

10.1016/j.topol.2017.12.023

Notas: ISI