On the Lefschetz zeta function for quasi-unipotent maps on the n-dimensional torus
Abstract
We compute the Lefschetz zeta function for quasi-unipotent maps on the n-dimensional torus, using arithmetical properties of the number n. In particular we compute the Lefschetz zeta function for quasi-unipotent maps, such that the characteristic polynomial of the induced map on the first homology group is the (n + 1)th cyclotomic polynomial, when n + 1 is an odd prime. These computations involve fine combinatorial properties of roots of unity. We also show that the Lefchetz zeta functions for quasi-unipotent maps on T-n are rational functions of total degree zero. We use these results in order to characterized the minimal set of Lefschetz periods for C-1 quasi-unipotent maps on T-n, having finitely many periodic points all of them hyperbolic. Among this class of maps are the Morse-Smale diffeomorphisms of T-n.
Más información
Título según WOS: | ID WOS:000336958500001 Not found in local WOS DB |
Título de la Revista: | JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS |
Volumen: | 20 |
Número: | 7 |
Editorial: | TAYLOR & FRANCIS LTD |
Fecha de publicación: | 2014 |
Página de inicio: | 961 |
Página final: | 972 |
DOI: |
10.1080/10236198.2013.872637 |
Notas: | ISI |