Minimal sets of periods for Morse-Smale diffeomorphisms on non-orientable compact surfaces without boundary
Abstract
We study the minimal set of (Lefschetz) periods of the C-1 MorseSmale diffeomorphisms on a non-orientable compact surface without boundary inside its class of homology. In fact our study extends to the C-1 diffeomorphisms on these surfaces having finitely many periodic orbits, all of them hyperbolic and with the same action on the homology as the MorseSmale diffeomorphisms. We mainly have two kinds of results. First, we completely characterize the possible minimal sets of periods for the C-1 MorseSmale diffeomorphisms on non-orientable compact surface without boundary of genus g with . But the proof of these results provides an algorithm for characterizing the possible minimal sets of periods for the C-1 MorseSmale diffeomorphisms on non-orientable compact surfaces without boundary of arbitrary genus. Second, we study what kind of subsets of positive integers can be minimal sets of periods of the C-1 MorseSmale diffeomorphisms on a non-orientable compact surface without boundary.
Más información
Título según WOS: | ID WOS:000315690700004 Not found in local WOS DB |
Título de la Revista: | JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS |
Volumen: | 19 |
Número: | 3 |
Editorial: | TAYLOR & FRANCIS LTD |
Fecha de publicación: | 2013 |
Página de inicio: | 402 |
Página final: | 417 |
DOI: |
10.1080/10236198.2011.647006 |
Notas: | ISI |