Partially periodic point free self-maps on surfaces, graphs, wedge sums and products of spheres
Abstract
Let (X, f) be a topological discrete dynamical system. We say that it is partially periodic point free up to period n, if f does not have periodic points of periods smaller than n + 1. When X is a compact connected surface, a connected compact graph, or S-2m boolean OR S-m boolean OR ... boolean OR S-m, we give conditions on X, so that there exist partially periodic point free maps up to period n. We also introduce the notion of a Lefschetz partially periodic point free map up to period n. This is a weaker concept than partially periodic point free up to period n. We characterize the Lefschetz partially periodic point free self-maps for the manifolds S-n x ...(k) x S-n, S-n x S-m with n not equal m, CPn, HPn and OPn.
Más información
Título según WOS: | ID WOS:000328183800007 Not found in local WOS DB |
Título de la Revista: | JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS |
Volumen: | 19 |
Número: | 10 |
Editorial: | TAYLOR & FRANCIS LTD |
Fecha de publicación: | 2013 |
Página de inicio: | 1654 |
Página final: | 1662 |
DOI: |
10.1080/10236198.2013.771634 |
Notas: | ISI |