Geodesic laminations as geometric realizations of Arnoux-Rauzy sequences

Sirvent, VF

Abstract

We consider a family of minimal sequences on a 3-symbol alphabet with complexity 2n + 1, which satisfy a special combinatorial property. These sequences were originally defined by P. Arnoux and G. Rauzy in [2] as a generalization of the binary sturmian sequences. We prove that the dynamical system associated to each of these sequences of this family, can be realized as a dynamical system defined on a geodesic lamination on the hyperbolic disk. This is a generalization of the results shown in [17]. We also show some applications of these results.

Más información

Título según WOS: ID WOS:000184738500006 Not found in local WOS DB
Título de la Revista: BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN
Volumen: 10
Número: 2
Editorial: BELGIAN MATHEMATICAL SOC TRIOMPHE
Fecha de publicación: 2003
Página de inicio: 221
Página final: 229
DOI:

10.36045/bbms/1054818025

Notas: ISI