Self-affine tiling via substitution dynamical systems and Rauzy fractals
Abstract
In this paper we show that a class of sets known as the Rauzy fractals, which are constructed via substitution dynamical systems, give rise to self-affine multi-tiles and self-affine tilings. This provides an efficient and unconventional way for constructing aperiodic self-affine tilings. Our result also leads to a proof that a Rauzy fractal R associated with a primitive and unimodular Pisot substitution has nonempty interior.
Más información
Título según WOS: | ID WOS:000178244800011 Not found in local WOS DB |
Título de la Revista: | PACIFIC JOURNAL OF MATHEMATICS |
Volumen: | 206 |
Número: | 2 |
Editorial: | PACIFIC JOURNAL MATHEMATICS |
Fecha de publicación: | 2002 |
Página de inicio: | 465 |
Página final: | 485 |
DOI: |
10.2140/pjm.2002.206.465 |
Notas: | ISI |