Self-affine tiling via substitution dynamical systems and Rauzy fractals
Abstract
In this paper we show that a class of sets known as the Rauzy fractals, which are constructed via substitution dynamical systems, give rise to self-affine multi-tiles and self-affine tilings. This provides an efficient and unconventional way for constructing aperiodic self-affine tilings. Our result also leads to a proof that a Rauzy fractal R associated with a primitive and unimodular Pisot substitution has nonempty interior.
Más información
| Título según WOS: | ID WOS:000178244800011 Not found in local WOS DB |
| Título de la Revista: | PACIFIC JOURNAL OF MATHEMATICS |
| Volumen: | 206 |
| Número: | 2 |
| Editorial: | PACIFIC JOURNAL MATHEMATICS |
| Fecha de publicación: | 2002 |
| Página de inicio: | 465 |
| Página final: | 485 |
| DOI: |
10.2140/pjm.2002.206.465 |
| Notas: | ISI |