Self-affine tiling via substitution dynamical systems and Rauzy fractals

Sirvent, VF; Wang, Y

Abstract

In this paper we show that a class of sets known as the Rauzy fractals, which are constructed via substitution dynamical systems, give rise to self-affine multi-tiles and self-affine tilings. This provides an efficient and unconventional way for constructing aperiodic self-affine tilings. Our result also leads to a proof that a Rauzy fractal R associated with a primitive and unimodular Pisot substitution has nonempty interior.

Más información

Título según WOS: ID WOS:000178244800011 Not found in local WOS DB
Título de la Revista: PACIFIC JOURNAL OF MATHEMATICS
Volumen: 206
Número: 2
Editorial: PACIFIC JOURNAL MATHEMATICS
Fecha de publicación: 2002
Página de inicio: 465
Página final: 485
DOI:

10.2140/pjm.2002.206.465

Notas: ISI